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ABSTRACT  

Command & Control (C2) planning presents an increasingly complex challenge, such as the growing 
availability of relevant data and how to process this in useable timeframes. By understanding the likely Red 
Force responses to a potential Blue Force Course of Action (CoA), planners are empowered to make better 
strategic decisions using insights from Artificial Intelligence (AI) wargaming. Modelling and Simulation 
(M&S) tools in combination with AI can rapidly predict Red Force CoA by consuming and processing 
observational data of the operational picture. We present Red Force Response (RFR), a decision support 
tool that exploits AI in a wargaming simulator to find potential Red Force CoAs. Using state-of-the-art Deep 
Neural Network (DNN) algorithms including Proximal Policy Optimisation (PPO) and Curiosity Learning, 
integrated into a Multi-Agent Reinforcement Learning (MARL) environment, the RFR agent finds both high 
performing and novel CoAs based on the reward and action selection diversity respectively. A 91% Red 
Force win probability was achieved in a tactical air scenario when trained for 17,587 episodes against a 
superior Blue Force. The concept demonstrates an effective use of AI for C2 planning, how cloud computing 
can be used to effectively train agents and how the concept could scale to larger problems. 

1.0 INTRODUCTION 

The Dstl Machine Speed Command & Control (MSC2) project was established to transform Command and 
Control (C2) by enabling faster and more effective C2 processes across all environments, domains, and 
levels of command. This aligns with the objectives to utilise modelling and simulation technology advantage 
for the defence-related capability development, threat mitigation and security posture of NATO nations. This 
work under the MSC2 project aimed to explore the potential for using Artificial Intelligence (AI) technology 
to control the behaviour of agents within a wargaming simulation to establish the feasibility of introducing 
complex behaviours, similar to those experienced in real environments. The main contribution of this work is 
a conceptual 'AI assistant' decision support tool that will help to understand 1) potential adversarial (Red 
Force) CoA that could be most damaging to a Blue Force, 2) possible novel Red Force CoA and 3) 
explainability techniques to help understand the effectiveness and novelty of the AI generated Red Force 
CoA. We present results that demonstrate the application of machine learning to this domain is highly 
effective. 

1.1 Technologies Utilised 
The following section details some of the key technologies utilised in this work. Reinforcement Learning 
(RL) involves an agent learning to make decisions by interacting with its environment to maximise rewards. 
Multi-Agent Reinforcement Learning (MARL) extends this concept to multiple agents who collaborate and 
share experiences within a shared environment, leading to more robust and creative solutions. [1] 

Environment vectorisation involves running multiple instances of an RL environment in parallel, allowing 
the agent to interact with several simultaneously. This reduces the time taken to reach training convergence 
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by collecting more diverse data from different environments. This improves sampling efficiency & training 
stability and reduces the risk of overfitting. Multi-core processing can further increase the performance 
benefits of vectorisation. [2] 

The reward profiles used typically by RL are directly related to actions taken by the agents and the feedback 
from the environment. This is known as an extrinsic reward. Curiosity learning was developed in 2017 as a 
method to introduce an intrinsic reward. The intrinsic reward is designed specifically as a small, regular 
reward to encourage exploration. Curiosity learning is achieved by calculating the difference between the 
next state as estimated by a predictor neural network, and the actual in-game next state. The larger the 
difference between the two, the larger the intrinsic reward, as it seeks to motivate actions in unexplored game 
state/action pairs. The predictor neural net is updated incrementally during RL training, to reduce curiosity 
around states already explored during training, to continually encourage novel exploration. Over time, the 
total curiosity reward trends downwards, as the RL explores more of the available state-action space; the 
goal is for the battle-winning behaviours to increase simultaneously, so that as the RL explores, it learns 
useful strategic behaviours, and is rewarded for these.  

Therefore, intrinsic rewards and extrinsic rewards are combined and provided for RL, to encourage curious 
behaviour in the simulator, while learning to reach broad strategic objectives. [3] 

1.2 Command: Modern Operations 
Command: Modern Operations is an advanced military simulator, used by a range of organisations, 
including the US Army, Air Force, Navy and Marine Corps, the UK MOD, Dstl, RAAF, Boeing, BAE, 
Lockheed Martin and parts of NATO. It offers the user the ability to recreate any post-WWII scenario, with 
detailed control over the operations of each unit. The user can also create and implement any custom 
scenario to allow for extensive mission planning, simulation and analysis.  

A key advantage of CMO is its fidelity – it offers some of the best-in-class wargaming capability. This is 
reflected by its advanced battle mechanics, which model engagements as probabilistic encounters decided 
based on unit type, sensors, weapons, and operator experience. Furthermore, CMO offers an expansive range 
of both modern and historic units, is supported by a large online user base, and is highly customisable for 
new scenario and unit creation.  

The simulator can be run in both Graphical User Interface (GUI) mode and headless mode; headless mode 
enables CMO to run much faster without loading graphics packages and is called directly via the command 
line. CMO combat mechanics are stochastic; the game contains a Monte-Carlo simulation feature to exploit 
this stochasticity to explore a range of possible scenario outcomes. The GUI was used to generate the 
scenario, described fully in Section 0. A key limitation of CMOs use is the associated license fees to run the 
software for RL training in headless mode: to undertake this work, the Professional Edition of CMO was 
necessary1. 

1.3 Rapid Exploratory Modelling Toolset 
Rapid Exploratory modelling Toolset (RET) is a Frazer-Nash developed open-source defence agent-based 
modelling framework, built in Python. RET extends the open-source Mesa library, inheriting core 
components. RET provides a headless, faster-than-real-time simulation to provide operational analysts a 
simple and flexible framework to assess a large problem space. RET is a stochastic model, allowing the 
likelihood of a particular outcome to be measured. It is intended to provide a solution between low fidelity & 
intensity modelling tools such as spreadsheet modelling and high fidelity & intensity modelling tools such as 
tools including CMO. 

 
1 CMO, Available: https://command.matrixgames.com/?page_id=3822 
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The most significant limitation of using RET as a platform for a multi-domain decision support tool was its 
fidelity. RET is a mid-fidelity operational analysis, agent-based modelling framework and not a high-fidelity 
wargaming simulator. RET does not model many of the more complex aspects of wargaming including 
experience, morale, health, fatigue, maintenance and consumables such as fuel, food and water. Hence a 
deployed RET decision support tool would be intended to be used alongside a richer tool such as CMO. 2 

2.0 METHOD 

2.1 Problem Scenario Formulation 
Two scenarios were created, with the aid of a Frazer-Nash military advisor, to model both a Coastal Area 
Defence (CAD) & Tactical Air Interdiction (TAI) mission. The CAD scenario was implemented in CMO & 
the TAI scenario was implemented in RET. Both scenarios were abstract and were not representative of any 
real-world historical engagements. 

Key aims for the development of the scenarios were to incorporate multiple domains, with multiple unit 
types that used a variety of weapons and sensor systems. The inclusion of several unit types was intended to 
introduce a complex range of strengths and weaknesses that the RL agent would have to understand to 
demonstrate campaign winning tactics. Another key aim was to create an interdependence of units such that 
the campaign cannot be won without a level of collaboration between units, which if achieved, would 
demonstrate a high-level of understanding of the problem space by the RL agent. Success in these scenarios 
would be a collaborative, targeted RFR, capable of eliminating Blue units by learning and maximising 
potential strategic advantages.  

2.1.1 Command: Modern Operations – Coastal Area Defence 

The developed CAD scenario in CMO models the territorial defence of a small coastal area, shown in  
Figure 1 (a). Units, weapons and sensors in the scenario are closely modelled to real unit capabilities, using 
the CMO DB3000 database [4]. Teams, units and loadouts are listed in Table 1. The scenario is unbalanced, 
with each side having relative advantages to exploit. 

Table 1: CAD scenario force composition. 

Red Force Blue Force 
Icon Unit (No.) Weapons  Icon Unit (No.) Weapons 

 

Type 23 
Frigate (1x) 

16x 55 Mk8 HE/ER  
32x 75 DS30B HE Burst 
2x Stingray Mod 1 
32x Sea Ceptor 

 

Type 23 
Frigate (1x) 

16x 55 Mk8 HE/ER  
32x 75 DS30B HE Burst 
2x Stingray Mod 1 
32x Sea Ceptor 

 

F-35C (6x) 2x AIM-120C-5 ARAAM 
2x AIM-132A ASRAAM 
6x Paveway IV 

  
AMX-30B2 
Tank Group 
(11x4 Tanks) 
 

30x 105mm Mle F2 APFSDS-T 
20x 105mm Mle F2 HE 
15x 20mm Single Burst 
20x 7.6mm MG Burst 

 

M777A2 
Towed 
Howitzer 
Artillery (4x) 

200x 155mm/39 HE 
60x 155mm/39 Base Bleed 
20x 155mm/39 M982 
Excalibur Ia-2 Base Bleed 

 

 
2 RET, Available: https://github.com/dstl/RET. 
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An attacking Blue Force follow a fixed course of action; Blue Force advance two tank groups separately, 
while simultaneously moving their frigate northward, to assault the x-marked territory in a joint attack, 
shown in Figure 1 (b). Red Force are defending, and without Red Force action, the land area is captured 
within an hour in scenario time. Red Force have an air advantage but can only win by developing a strategy 
for focusing their Paveway missile use on Blue land units. The winning condition for Red is to successfully 
defend the territory against the Blue Force assault; conversely, the wargame is lost if the territory is captured 
by Blue Force. 

   
(a) (b) 

Figure 1: Showing scenario (a) in CMO and (b) in Tacview for postprocessing of unit CoAs, with the Blue CoA 
shown using arrows to the contested territory, marked with crosses. 

2.1.2 Rapid Exploratory modelling Toolset - Tactical Air Interdiction 

The scenario sees the Red Force coordinating a large strike package of several different classes of aircraft 
with varying loadouts, that aim to deliver a tactical air interdiction mission upon Blue Force heavy armour 
units. The Blue Forces advance under the protection of air defence upon two key bridges, in aim of capturing 
them. To win, the Red Force must interdict the Blue Forces before they can capture the key bridges. The 
composition of forces, including the ammunition capacity of each unt modelled is shown in Table 2. 

All platforms, weapons, and sensors modelled in RET were generic and were not intended to represent the 
performance of any real-life systems.  

Figure 2 shows the starting position of the units within the simulation. The circles around units shown, 
demonstrate the maximum horizontal range of the weapons of each unit. The calculation of range to target in 
RET includes altitude, so maximum weapon range within the simulation forms a sphere of influence around 
the unit, rather than a two-dimensional circle. The circles shown also highlight the maximum identification 
range of the sensors of each unit. Sensors in RET have three confidence levels associated with them. 
Detection is the lowest level of observation possible, revealing only the position of object. Recognition 
allows the unit type to be discerned. Identification, which is the highest level of observation, reveals the 
affiliation and casualty status of the object. The TAI scenario was simulated over an hour window from 
12:00 to 13:00 in 10s timesteps in a 200x100km zone of interest.  
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Table 2: TAI scenario force composition.

Red Force Blue Force
Icon Unit (No.) Target Type 

(Ammunition)
Icon Unit (No.) Target Type 

(Ammunition)
Strike aircraft (x3) Land-based vehicles 

(x6)
Air superiority
fighter aircraft (x4)

Aircraft (x6)

Suppression of enemy 
air defence aircraft
(x4)

Air defence units (x6) Communications 
jamming system 
(x1)

Enemy 
communications (∞)

Electronic warfare 
aircraft (x1)

Enemy sensing 
capability (∞)

Surface-to-air 
missile system (x6)

Aircraft (x5)

Air superiority fighter 
aircraft (x4)

Aircraft (x6) Armour (x8) Land-based vehicles 
(x30)

Armour (x4) Land-based vehicles 
(x30)

Command and 
control (x1)

None

Command and control 
(x1)

None Strike aircraft (x1) Land-based vehicles 
(x6) 

Anti-aircraft warfare
frigate (x1)

Aircraft (x50)

Reconnaissance 
satellite (x1)

All units (∞)

Ground station (x1) None 

Figure 2: TAI scenario starting laydown, circles indicate weapon ranges.

2.2 Promoting Novel Red Force CoA
Separate actions, observations & rewards were utilised in the different simulation tools, owing to the 
requirements of the tools and objectives of the scenarios.
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2.2.1 Coastal Area Defence 

Red units can act each timestep, either to attack Blue units, or to move along the cardinal directions, shown 
in the action space of Table 3 (a). Three reward profiles were tested: extrinsic, intrinsic, and a combination of 
extrinsic and intrinsic. Extrinsic rewards are detailed in Table 3 (b). As described in Section 0, intrinsic 
reward is calculated as the total numerical difference between the predicted next state, as assessed by a 
neural net using the previous state and actions, and the real next state. Finally, the observation space for each 
unit, which is an observation of each other unit in the scenario, normalised relative to the scenario x, y, z 
size, is shown in Table 3 (c). 

Table 3: CAD scenario (a) Action space (b) Rewards (c) Observations. 

ID Action 
0 
 

Move North 
One Cell (2km) 

1 Move South 
One Cell (2km) 

2 Move East One 
Cell (2km) 

3 Move West One 
Cell (2km) 

4 Attack Enemy 
Unit 

(a) 

Unit Action Reward 
Move Unit + 0.5 
Attack 
Enemy Unit 

+ 5 

Winning 
Game 

+ 100 
+ 10800 
- steps 

Out-of-Area 
Penalty 

- 10 

Out-of-
Territory 
Penalty 

= 0 

    (b) 

ID Observation 
0 Linear distance to the observed 

unit 
1 Relative X distance to the 

observed unit 
2 Relative Y distance to the 

observed unit 
3 Relative Z distance to the 

observed unit 
4 Unique ID of the observed unit 
5 Affiliation of the observed unit 

(c) 

If the territory defence was successful, a +100 reward, + max steps – steps taken reward is given: steps taken 
is the total number of stems taken before the win condition is met. This is designed to motivate efficient 
winning – the model is rewarded more for winning quickly, than for winning slowly. This only applies to the 
win condition – no time penalty is applied to a lost game. 

The RL was penalised for exploring too far out of bounds, to prevent curiosity exceeding the bounds of a 
relevant scenario area. For the tested scenario, the bounding area was ±2⁰ latitude, ±2⁰ longitude, from the 
initial Red unit positions. This is mainly relevant to the F-35Cs in the target scenario.  

If a unit tried to move into an inaccessible territory, such as a ship onto land, 0 overall reward was given for 
the timestep. This was to prevent a unit becoming curious around natural boundaries in the map. 

It was hypothesised that the combined extrinsic and intrinsic reward profile would learn fastest and have the 
best overall result. This hypothesis is supported by [3], since a mix of curiosity-driven learning and overall 
strategic reward creates a non-sparse, strategy-aligned reward profile. 

2.2.2 Tactical Air Interdiction 

Observations and rewards were normalised to aid with training performance. The action space, or 
possible actions for the RL agent to select from the Red Force units allowed the unit to either to move 
into adjacent grid cells or to use their weapon/countermeasure. The action space implemented is 
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shown in Table 4 (a). 
The extrinsic reward function included a significant yet sparse reward for effectively solving the 
problem space, by winning the campaign through the destruction of all Blue Force armoured units, 
awarded to all units that remained alive, at the point of victory. More frequent rewards were included 
for the destruction of Blue Force units, awarded on a unit-by-unit basis. A small continuous living 
penalty was also applied to encourage movement and decisive actions. The reward function was 
intended to reward outcome rather than method to allow the RL agent to generate potentially novel 
CoAs. The reward function is shown in Table 4 (b). 

Red Force units do not have a global view of other units within the game and must rely on their own sensors 
and communication to detect enemy units. As such, the units must move within sensor range of other units to 
perceive them. The observation that each unit makes for all other units, which are all expressed numerically, 
in the simulation is shown in Table 4 (c). 

Table 4: Showing (a) action space, (b) reward profile and (c) observation space for the TAI scenario. 

ID Action 
0 Move North One 

Cell (2km) 
1 Move East One 

Cell (2km) 
2 Move South One 

Cell (2km) 
3 Move West One 

Cell (2km) 
4 Use Weapon/ 

Countermeasure 

(a) 

Unit 
Action 

Reward 

Destroy 
Blue Force 
unit 

+1 

Destroy all 
Blue Force 
armoured 
units 

+1 

Living cost  

(b) 

ID Observation 

0 Linear distance to the observed unit 

1 Relative X distance to the observed unit 

2 Relative Y distance to the observed unit 

3 Relative Z distance to the observed unit 

4 Unique ID of the observed unit 

5 Affiliation of the observed unit 

6 Casualty state of the observed unit 

7 Agent type of the observed unit 

8  Ammunition remaining of the observed unit 

(c) 

2.3 Algorithm Selection for a High-Performing Red Force Agent 
For this study, the RL agent utilised the Proximal Policy Optimisation (PPO) algorithm as implemented in 
the Stable-Baselines3 Python library. PPO was primarily selected as the algorithm of choice due to its state-
of-the-art nature, training stability, sampling efficiency & versatility.  

Unlike other methods, PPO uses a clipped surrogate objective function that prevents excessively large policy 
changes from a single update. This allows PPO to achieve highly stable and reliable results in complex 
environments with high-dimensional state spaces. Due to its high sampling efficiency, PPO can learn 
effectively from fewer interactions with the environment than other methods. PPO has also been 
demonstrated to be an effective approach to solving a wide variety of problems. [5] 

Stable-Baselines3 offers a well-documented, optimised and widely used implementation of PPO. The multi-
agent environment wrapper utilised, SuperSuit, also only has native support of environment vectorisation for 
gymnasium, Stable-Baselines & Stable-Baselines3. [6] 
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2.4 Architecture & Platform Integration  
The architecture of the RFR framework has three main components: the simulation engine, the multi-agent 
environment and the reinforcement learning agent. We utilised RET & CMO as simulation engines, 
PettingZoo as a multi-agent environment and Stable-Baselines3’s PPO as a reinforcement learning agent. 

PettingZoo is a multi-agent equivalent of OpenAI gymnasium utilising an almost identical set of 
requirements for defining a particular environment, such as a reset and step function. The environment is 
provided with all of the required methods of each simulation platform to control each of the units in the 
simulation and advance the model timestep. This offers seamless handling of multiple interacting agents with 
distinct policies and capabilities. 

The user (Blue Force commander) defines the units and the environment, the algorithm and hyperparameters 
to train with and is returned the data from the evaluation campaigns alongside the trained RL agent. 

2.5 Experimental Setup, Configuration & Training 
Training was performed on an Azure Windows 10 Virtual Machine (VM). All training was performed on the 
Standard NC8as T4 v3 VM, which was allocated 8 virtual CPU cores, 56GB of memory an NVIDIA Tesla 
T4 GPU. The cloud deployment of training allowed for flexible resource scaling and robust data protection, 
whilst training utilised the GPU. [7] 

Most hyperparameters were left unchanged from the default optimised values provided in Stable-Baselines3. 
The experimental configurations used, including non-default hyperparameters is shown in Table 5.  

Table 5: Experimental configuration of training parameters. 

Training Parameter  CAD Scenario  TAI Scenario 
Total training steps 10,800,000 40,000,000 
Evaluation campaigns run 500 200 
Vectorised environments 3 128 
Reward horizon (timesteps) 10,800 360 
Batch size 10,800 46,080 
Entropy coefficient 0.01 0.01 

3.0 RESULTS AND DISCUSSION 

3.1 Experimental Results 
The following section details the results of training from the CAD and TAI scenario. The total time taken for 
training and evaluation was 127,800s for the CAD scenario and 57,222s for the TAI scenario. Training 
averaged a mean timesteps per second of 85its/s for the CAD scenario and 735its/s for the TAI scenario. 

3.1.1 Coastal Area Defence 

To evaluate the effectiveness of RL in the CAD scenario, three reward profiles were used in training and 
testing. An extrinsic reward profile, intrinsic reward profile, and combined extrinsic and intrinsic reward 
profile, were used to train three separate agents respectively.  
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Figure 3: CAD Scenario Results. (a) Normalised reward trends during RL training. (b) Campaign win rate 
trends during training. (c) Final performance evaluation during 500 evaluations. 

The trend in Figure 3 (a) indicates a relatively consistent extrinsic reward during training, with a sharply 
decreasing intrinsic reward. This indicates that the RL curiosity decreases considerably following an initial 
exploration of the scenario, while the average reward for achieving strategic objectives remains consistent 
over training. This supports the intrinsic reward performance evaluation of Figure 3 (b), which shows the 
intrinsic RL improving quickly initially, but failing to maintain a high campaign win rate. Although the 
curiosity reward may push the RL towards fast, creative courses of action, it is likely that in lacking an 
overall long-term strategic reward, the RL fails to adhere to a consistently effective course of action. 
Conversely, the slower learning rate of the purely extrinsic reward may reflect a lack of creativity and 
novelty when developing a strategy in the CAD scenario.  

It is the combined extrinsic and intrinsic reward profile that outperforms during training, showing a greater 
overall performance improvement over the same training period. This result indicates that a combined 
reward profile does encourage faster learning and better outcomes for reinforcement learning, as per [3]. This 
is reflected by the evaluation results of Figure 3 (c), where the combined extrinsic and intrinsic reward 
markedly outperforms the separate reward profiles, by 18% and 14% against extrinsic and intrinsic rewards 
respectively. 

3.1.2 Tactical Air Interdiction 

The mean total Red Force reward and mean length of one campaign during the training of the RL agent is 
shown in Figure 4. Mean was a rolling average taken over the last 100 campaigns.  
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Figure 4: Reinforcement learning training performance monitoring. 

Figure 4 shows that training reached a point of relative stabilisation beyond 30 million timesteps, 
suggesting that the PPO algorithm has converged upon a particular learned behaviour and any further 
training is unlikely to significantly improve the result. Post training, the RL agent was deployed in an 
evaluation environment to measure its performance. A comparison of approaches is shown in Figure 5. 

 
Figure 5: Evaluation of performance of trained RL agent against user and untrained RL agent. 

Figure 5 shows that the trained RL agent significantly outperformed the human user-defined and untrained 
RL agent as expected. The trained RL agent achieved an overall campaign win-rate of 91% compared to 
27% for a user-defined CoA. The total reward achieved by the RL agent was significantly higher than the 
user-defined CoA and the inter-quartile ranges of each distribution did not overlap.  
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3.2 Develop Explainability Tools & Metrics 
A number of techniques were exploited or developed to help interpret the agent generated CoA. The first was 
an interactive, web-based heatmap which was used to show the position units aggregated over a number of 
samples. A check box was implemented to switch on or off units which helped to understand the temporal 
development of individual unit behaviour. A Red Force fighter aircraft example is shown in Figure 6 (a), 
which indicates that the aircraft have a particular concentration in the southwest area of the map, having 
learnt to destroy the Blue Force strike aircraft in that region which are tasked with destroying the satellite 
ground station. These tools allowed us to understand that the RL agent has learnt that campaigns in which it 
continues to receive periodic global observations from the satellite are more successful than those which it 
does not and that the ground station must be protected for these observations to be provided for the duration 
of the campaign. 

 
(a) 

 
(b) 

Figure 6: RFR explainability tools. (a) Interactive explainability heatmap of Red Force fighter aircraft in the TAI 
scenario. (b) Model playback tool (timestep 68 of 110). 

Other key information on the learnt behaviour can be analysed through model playback visualisation. An 
instance of a model playback is shown in Figure 6 (b) which shows the RL agent engaging Blue Force air 
defences prior to successfully engaging Blue Force armour with its strike aircraft.  

These tools enabled us to observe the Red Force concentrating forces to limit exposure to different air 
defence units, protecting the mission critical strike aircraft and waiting at the maximum range of Blue Force 
air defences to allow all SEAD aircraft units to engage simultaneously. The risks taken by the RL agent may 
be unacceptable to a real-world Red Force commander. However, the results highlight potential novel high-
risk strategies that Red Force may employ to overcome Blue Force, which the Blue Force commander 
should be prepared to counter. Model playback and heatmap analysis were key to deciphering how Red 
Force overcame Blue Force and as such can support Blue Force decision making through the visualisation of 
the learnt CoA. 

4.0 CONCLUSION 

This work provides initial demonstration of the potential of AI in delivering operational benefits in C2 by 
using RL to simulate RFR CoAs in custom wargaming scenarios. This work has shown that RL agents can 
be trained in both a simple (RET) and a more complex (CMO) wargaming simulation environment. In both 
platforms, novel campaign winning strategies have emerged.  

High performance RL agents have been demonstrated across both platforms in multi-domain (Land, Sea & 
Air) scenarios. The training of these RL agents has included the implementation of curiosity learning and 
parallelised cloud computing. These technologies have helped lead to the demonstration of an average win 
rate for the Red Force of 85% in the CAD scenario and 91% in the TAI scenario. Combined intrinsic 
curiosity and extrinsic strategic rewards have been shown to outperform both individual reward profiles, in 
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learning rate and win percentage, in the CAD scenario. The developed explainability tools have 
demonstrated deep insight into the learnt behaviours of the RL agents, allowing the user to have a high level 
of understanding of the Red Force tactics employed and the reason for their successes. Both platforms show 
potential to be developed into a decision support tool, with increased maturity in particular areas such as 
improving training efficiency, increasing scenario scale and the inclusion of additional warfighting domains.  

5.0 FUTURE WORK 

The RFR tool described has shown great success when used with both RET and CMO in a research and 
development environment. Further development should include work to generalise the tool, increase scale & 
maturity, and look towards operationalisation. This might involve the inclusion of additional domains; 
currently the tool has been integrated with the Air, Sea and Land domains, with a limited exposure to 
electronic warfare. Utilisation of, for example, the cyber domain and intelligence would serve to further 
increase the usability and effectiveness of the tool. 

Operationalisation of the tool could involve at least three use cases: 

1. C2 Planner. A desktop application able to suggest possible Red Force CoA to a C2 planner. This idea 
could be extended to include other interaction methods, such as an API library to use the underlying 
code in external applications or as a tool to support immersive insights using virtual reality. The tool 
could also be broadened to support Force Composition Analysis, allowing the C2 planner to 
understand Red Force strength, command structure and disposition of personnel and equipment. 

2. Personnel Training. The tool could also be used as an adversarial training partner used by the 
wargaming community to facilitate a role as a teaching aid or testing facility. This could be an 
efficient way to upskill personnel or act as an impartial testing methodology. 

3. AI Training. The tool could also be used as a training agent against other computer-based software 
agents in a machine vs. machine application. This ‘tournament’ style interaction has proven effective 
at mastering environments, e.g. AlphaGo [8], and could provide an efficient way to broaden the 
experience and training data of the model. This is also a route by which a Blue Force agent could be 
trained adding to the richness and complexity of the overall tool but also moving towards are more 
generalised system. 
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